

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

https://doi.org/10.23913/ride.v14i27.1577

Artículos científicos

Aplicación de algoritmos genéticos con reglas de decisión en el

balanceo de líneas en forma de U estocástico

Application of genetic algorithms with decision rules in stochastic u-shaped

line balancing

Aplicação de algoritmos genéticos com regras de decisão no

balanceamento estocástico de linhas em U

Demetrio Fermán Alvarez

Tecnológico Nacional de México, México

m20112714@cdjuarez.tecnm.mx

https://orcid.org/0000-0002-0655-7761

Ulises Martínez Contreras

Tecnológico Nacional de México, México

 ulises.mc@cdjuarez.tecnm.mx

 https://orcid.org/0000-0002-1631-4448

Mirella Parada González

Tecnológico Nacional de México, México

 mirella.pg@cdjuarez.tecnm.mx

https://orcid.org/0000-0002-8257-685X

Arturo Woocay Prieto

 Tecnológico Nacional de México, México

 arturo.wp@cdjuarez.tecnm.mx

https://orcid.org/0000-0001-9235-0494

Adán Valles Chávez

Tecnológico Nacional de México, México

 avalles@itcj.edu.mx

https://orcid.org/0000-0002-6559-0123

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

Resumen

Actualmente, la mayoría de investigaciones acerca del problema de balaceo de líneas de

ensamble consideran que los tiempos de las tareas son determinados. Sin embargo, en los

procesos de fabricación siempre existe la posibilidad de obtener en los procesos variaciones

que impactan en los tiempos de las tareas. Por eso, en el presente trabajo, con base en un

enfoque estocástico, se presenta un método que utiliza técnicas metaheurísticas mediante un

algoritmo genético, el cual tiene como objetivo brindar una solución al problema de

balanceo tipo 1 de líneas en forma de U con tiempos de tarea estocásticos. Para ello, se han

tomado como referencia problemas existentes en la literatura para luego ofrecer una

comparación entre las soluciones existentes. En el proceso de validación se utilizaron siete

categorías de problemas resueltos por otro método. La solución brindada por el algoritmo

se sometió a un análisis experimental de los datos para comprobar si era capaz de dar una o

más soluciones mejores a las existentes; de ese modo, se buscó balancear la línea con la

menor cantidad de recursos humanos posible. Los datos muestran mejores soluciones para

los problemas de alta varianza únicamente en el resultado WS mayor, donde se observa una

diferencia del 4 %; en los demás hallazgos los porcentajes son mejores. Además, se

encontraron seis soluciones mejores a las existentes.

Palabras clave: técnicas metaheurísticas, solución al problema de balanceo, líneas en

forma de U, estocásticos, validación.

Abstract

Currently, most of the research on the assembly line balancing problem considers that the

task times are determined. However, in manufacturing processes there is always the

possibility of obtaining variations in the processes, these variations lead to variations in the

task times, which leads to address this type of problem from a stochastic approach. This

paper presents a method that uses metaheuristic techniques, through a genetic algorithm

which aims to solve the problem of balancing type 1 of U-shaped lines with stochastic task

times using existing problems in the literature and then make a comparison between the

existing solutions.

Seven categories of problems solved by another method were used for the validation

process. The solution provided by the algorithm was subjected to an experimental analysis

of the data to check if it is capable of providing one or more solutions that are better than

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

the existing ones, seeking to balance the line with the least amount of human resources

possible. The results show better solutions for the high variance problems, only for the WS

Major result a difference of 4% is observed, but in the remaining results the percentages are

better. It can be observed that 6 better solutions were found than the existing ones.

Keywords: metaheuristic techniques, solution to the balancing problem, U-shaped lines,

stochastics, validation.

Resumo

Atualmente, a maioria das pesquisas sobre o problema de balanceamento de linha de

montagem considera que os tempos das tarefas são determinados. Porém, em processos de

fabricação sempre existe a possibilidade de se obter variações nos processos que impactam

os tempos das tarefas. Por esse motivo, no presente trabalho, baseado em uma abordagem

estocástica, é apresentado um método que utiliza técnicas metaheurísticas por meio de um

algoritmo genético, que visa fornecer uma solução para o problema de balanceamento tipo

1 de linhas em forma de U com tempos de tarefas estocásticas . Para isso, foram tomados

como referência problemas existentes na literatura para posteriormente oferecer uma

comparação entre as soluções existentes. No processo de validação, foram utilizadas sete

categorias de problemas resolvidos por outro método. A solução fornecida pelo algoritmo

foi submetida a uma análise experimental dos dados para verificar se era capaz de dar uma

ou mais soluções melhores que as existentes; Desta forma, buscou-se equilibrar a linha com

a menor quantidade de recursos humanos possível. Os dados mostram melhores soluções

para problemas de alta variância apenas no maior resultado de WS, onde se observa uma

diferença de 4%; nos demais achados as porcentagens são melhores. Além disso, foram

encontradas seis soluções melhores que as existentes.

Palavras-chave: técnicas metaheurísticas, solução do problema de balanceamento, linhas

em forma de U, estocástica, validação.

Fecha Recepción: Noviembre 2022 Fecha Aceptación: Julio 2023

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

Introduction

In industrial production processes there are countless operations carried out directly

by the human being, each of which must be balanced according to the different needs of the

production process, hence it is important to have an adequate balancing of lines to meet the

estimated demands of the product. In this regard, Orejuela and Flórez (2019) highlight that

the first designs of assembly lines were developed to obtain efficiency and eliminate

production costs in operations that commonly work against inventories. For this reason,

research has been carried out to create optimal methods of assigning tasks in the stations of

an assembly line, which are called the assembly line balancing problem (ALBP).

Assembly lines can be linear and U-type; the latter offer improved productivity and

quality, which is why they are considered one of the best for implementing just-in-time

(JIT) systems. Although there is a growing interest in the literature to arrange straight or

linear assembly lines as U-shaped lines to improve performance, literature works are still

limited. The U-type Assembly Line Balancing Problem (UALBP) is an extension of the

Straight Line Balancing Problem (SALBP), in which tasks can be assigned from both sides

of the precedence diagram (Baykasoğlu & Özbakır, 2006).).

Line balancing problems are divided into two types: type 1 and type 2. In the first,

the cycle time is already known, so tasks are assigned to work stations to minimize the

number of stations. In problem type 2, the aim is to reduce the cycle time when the number

of stations is fixed.

Heuristic and metaheuristic techniques have allowed the development of solution

methodologies for assembly line balancing problems that cannot be addressed with

conventional methods. For example, Gallego et al. (2015) mention that metaheuristic

techniques are very useful to solve optimization problems, which cannot be solved by other

types of techniques.

Metaheuristics operate by means of algorithms that are not common order, but

special because, basically, they are not governed by a predictive, causal, or organized

pattern, but random. This algorithm acquires its optimal form through roaming or trials that

approximate the solution. “The best known algorithms in metaheuristics are genetic

algorithms, tabu search, ant colony algorithm (ACO), simulated annealing, particle swarm

optimization (PSO)” (Maldonado, 2016, p. 173).

Genetic algorithms were originally developed by J. Holland. They have the ability

to learn, which is the most determining feature in the evolution of any living system or that

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

exhibits life. This search technique uses a population of solutions that are independently

manipulated (Maldonado, 2016).

Currently, in most ALBP studies, determined parameters are considered. However,

in actual manufacturing processes there is always uncertainty, as there may be variations in

manual and machine operating times. Therefore, to minimize the negative effects of all

these unexpected problems, stochastic theory has been applied in the SALBP and UALBP

(Zhang et al., 2018).

Now, although in recent years different authors have proposed methodologies to

solve the ALBP, the present investigation is developed within the stochastic approach in

the balancing of U-shaped lines type 1. Genetic algorithms, being more efficient methods,

allow us to provide more options for possible solutions to the problem of stochastic

balancing of U-shaped lines type 1. In this sense, Martínez (2015) developed and published

a new algorithm that uses metaheuristic techniques through genetic algorithms with

heuristic rules, which can help to solve ALBP and UALBP, since they provide one or more

good solutions, and in some cases optimal, to apply to any process.

To solve the stochastic UALBP type 1, the algorithm is adapted by incorporating

equations to calculate the probabilities that the times in the workstations exceed the cycle

times. The performance of the algorithm is evaluated and compared with existing solutions

in the literature of Adil Baykasoğlu y Lale Özbakır (2006) “Stochastic U-line balancing

using genetic algorithms” (p. 139).

Methods and materials

Genetic algorithm

To Cortez (2004) A computational process, also called an algorithmic process or

algorithm, is fundamental to computer science, since a computer cannot execute a problem

that does not have an algorithmic solution. Evaluating the efficiency of algorithms,

therefore, has a lot to do with assessing their complexity. In this sense, the theory of

computational complexity is the part of the theory of computation that studies the resources

required during computation to solve a problem. The resources commonly studied are time

(number of execution steps of an algorithm to solve a problem) and space (amount of

memory used to solve a problem). An algorithm that solves a problem, but takes a long

time to do so, will hardly be of any use.

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

Genetic algorithms are part of the so-called evolutionary techniques, originally

proposed in the 1950s, which have a common basic structure: they reproduce, carry out

random variations, promote competition, and execute the selection of individuals from a

given population. Whenever these four processes are present, whether in nature or in a

computer simulation, evolution is the byproduct.

In computer simulations —according to Gallego et al. (2015)— genetic algorithms,

like other evolutionary techniques, simulate a process of natural selection to obtain the

solution of optimization problems. In this case, the problem to be solved plays the role of

the environment and each individual in the population is associated with a candidate

solution. In this way, an individual will be more adapted to the environment whenever it

corresponds to a more effective solution to the problem.

Evolutionary computing has the advantage of being able to solve problems through

simple mathematical descriptions. "In this way, evolutionary computation must be

understood as a set of generic and adaptable techniques and procedures, to be applied in

solving complex problems, for which other known techniques are ineffective or not

applicable" (Gallego et al., 2015, p.6).

Evolutionary algorithms are techniques based on a population of individuals, which

are in constant communication and sharing information through reproduction and mutation

operators. The population is made up of several individuals, which are generally

represented by a binary string called a chromosome, where each bit of this string is known

as a gene. (Esparza, 2009).

Modified direct coding algorithm to solve the type 1 stochastic UALBP

In direct coding, the genetic algorithm is fed with the specific data of each problem.

Balancing problems have a number of tasks, task times, restrictions and precedence of

these, as well as a given cycle time. In the direct coding algorithm, each gene represents a

task, that is, the number of genes is equivalent to the number of tasks. The previously

mentioned data is introduced to the algorithm and it will generate an initial population; then

the search for an ideal chromosome (one that generates an optimal number of workstations)

begins. If no such chromosome is found, new populations are generated using breeding,

crossing, and mutation genetic operations. (Martínez, 2015).

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

Coding

As Martínez (2015) comments, the first step to build a genetic algorithm is to define

a genetic representation called coding. Thus, each task is numbered sequentially in the

order in which it will be assigned to the workstations, and each chromosome gene contains

the task number it represents (Martínez, 2015).

The chromosome is symbolized by a line graph or isomorphic diagram, so called in

graph theory. The isomorphic diagram contains the same precedence configuration as the

original diagram, ie the isomorphic diagram is equivalent to the precedence diagram. This

is used to build a chromosome.

The method used to construct a valid random sequence of genes on the chromosome

(isomorphic diagram) is as follows:

Step 1: Generate an empty chromosome with a number of genes equal to the

number of tasks.

Step 2: Select a task set that does not have precedence.

Step 3: Select an available task at random and add it to the chromosome.

Step 4: Remove the selected task from the task set without precedence.

Step 5: Add all immediate successor tasks to the aggregated task, as long as all of its

predecessors are already on the chromosome.

Step 6: If there are still unassigned tasks, go back to step 3; otherwise, terminate the

chromosome.

Figures 1 and 2 show the precedence diagram and the isomorphic representation,

respectively, for the Mertens problem.

Figure 1. Mertens problem seven tasks precedence diagram

Source: Scholl (1993)

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

Figure 2. Mertens problem isomorphic representation

Source: Own elaboration

Initial population

The initial population of chromosomes is generated randomly, and the number of

chromosomes to use is defined by the user. Many of the possible gene combinations are

irrelevant because they violate precedence constraints. To generate the initial population,

the isomorphic diagram construction method is used. Thus, it is guaranteed that the

generated chromosomes maintain a valid sequence of genes. Table 1 shows a chromosome

for the Mertens problem.

Table 1. Mertens problem chromosome

Chromosome
Genes

1 4 7 2 3 5 6

Source: Own elaboration

Since each chromosome is represented by an isomorphic diagram, this can be used

to graphically show how the U-shaped line would be represented once the problem has

been solved. Figure 3 shows the U-shaped graphical representation for the Mertens

problem.

Figure 3. Mertens problema U-shaped graphical representation

Source: Own elaboration

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

Decoding

Chromosomes are generated in such a way that the sequence does not violate

precedence constraints, which allows tasks to be assigned multiple workstations instead of

one (Martínez, 2015). The decoding process refers to the procedure by which the

chromosome genes (tasks) are assigned to the workstations and the way in which they are

generated.

When this process ends, a solution is obtained, which shows a fitness index (number

of workstations), a smoothness index and a computational time.

The following notations used by Baykasoğlu and Özbakır (2006) are used for the

development of the algorithm.

N number of tasks

T Cycle time

µi(Tj) Average processing time of task i

σi Standard deviation of the processing time of task i

Pk Probability that the station time exceeds the cycle time

Zk Random variable with mean of 0 and standard deviation of 1

F(Zk) Accumulated value of the Zk function

α Upper limit of the probability that the station time exceeds the cycle time

Kα α quantile of the standard normal distribution

σi² Variance of the processing time of task i

The method used to decode the chromosome is described below:

1. Create an empty workstation.

2. 2. Select the start and end tasks, and assign one of them to the first workstation.

3. 3. Calculate the probability that the station time exceeds the cycle time using

equations 1 and 2 (Baykasoğlu y Özbakır, 2006).

 𝑃𝑘 = 1 − 𝐹(𝑍𝑘) (1)

 Z𝑘 =
(T−Σµ𝑖)

√Σσ𝑖²
 (2)

4. If the probability that the station time exceeds the cycle time is less than the value of

α, the assignment of tasks to the station continues.

5. If the probability that the station time exceeds the cycle time is greater than the

value of α, the next station is opened and the assignment of tasks continues.

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

6. The leftmost tasks are added if their ancestors are already on the chromosome, and

the rightmost tasks are added if their successors have already been assigned.

7. Go back to step 3, and repeat the process until you finish the assignment of tasks;

then finish the process.

Variance Generation

 The literature on the stochastic U-shaped line balancing problem is very limited.

Although the methodologies that have been proposed show the development of the method

to arrive at the solution, they do not teach specific values for the mean and the variance of

the tasks. In this sense, Armin Scholl (1993) proposed a set of problems, which have been

used by different authors in solutions to the line balancing problem; however, it is difficult

to find problems in the literature that show the specific values for the variance of the tasks;

consequently, it was necessary to develop a method and combine it with the Carraway

approach used by Urban and Chiang (2006) for the generation of such variances.

The variance is randomly generated using part of the Carraway approach. In this, random

variance values are generated in two intervals [0, (Ti/4)²] for low variance and [0, (Ti/2)²]

for high variance and using the minimum cycle times to generate a range of random values.

The Mertens problem is used to show the procedure. Table 2 shows the mean tasks time for

this problem.

Table 2. Mertens (1967) problem mean tasks time

Task Mean tasks time

1 1

2 5

3 4

4 3

5 5

6 6

7 5

Cycle time 8

Source: Own elaboration

1. The maximum values of Zk were determined as 1.28, 1.645, and 1.96 (Urban and

Chiang 2006). Using equation 2, the following equations can be developed and a

maximum value of the variance determined for each task.

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

 σ𝑖 =
(C−µ𝑖)

Z𝑘
 (3)

 σ𝑖² = [
(C−µ𝑖)

Z𝑘
]² (4)

2. Calculation of variance task 1.

 σ𝑖 =
(8 − 1)

1.96
= 3.571, σ𝑖 =

(8 − 1)

1.645
= 4.255, σ𝑖 =

(8 − 1)

1.28
= 5.469

 σ𝑖2 = 12.755 σ𝑖2 = 18.105 σ𝑖2 = 29.909

It is observed that the smallest variance calculated is for the Zk value of 1.96. This

is the value that is selected as the maximum variance for this task. Also, it is used as the

maximum value for the range of random values for the variance of this task. This is

selected because any larger value of variance would not generate any solution, that is, there

is no way to assign the task (in this case, 1 to some workstation9, since a larger variance

would exceed the probability that the The station time exceeds the cycle time.The same

procedure is carried out for the missing tasks. Then, in the results table 3, the Carraway

approach for the selection of the interval of the variance is included.

Table 3. Calculated variance results

Task

Carraway

variance

range

Standar deviation (σ) for Zk

values
Variance (σ²)

[0,(Tj/4)²] Z=1.96 Z=1.645 Z=1.28 σ² Calculated σ² Random

1 0.0625 3.571 4.255 5.469 12.755 0.017

2 1.5625 1.531 1.824 2.344 2.343 0.165

3 1 2.041 2.432 3.125 4.165 0.257

4 0.5625 2.551 3.040 3.906 6.508 0.541

5 1.5625 1.531 1.824 2.344 2.343 0.987

6 2.25 1.020 1.216 1.563 1.041 0.976

7 1.5625 1.531 1.824 2.344 2.343 1.556

Source: Own elaboration

3. The values of the columns [0,(Tj/4)²](Carraway variance range) and calculated σ²

are compared, and the smaller values are selected. In this example, the values in

column [0,(Tj/4)²] are selected, since they are the smallest for tasks 1, 2, 3, 4, 5 and

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

7; for task 6 the value of the calculated σ² column is selected. Table 4 shows the

intervals of the variance and the random results for it.

Table 4. Randomized results for variance

Task
Maximum

variance values

Interval

variance
σ² Random

1 0.0625 0 - 0.625 0.017

2 1.5625 0 - 1.5625 0.165

3 1 0 - 1 0.257

4 0.5625 0 - 0.5625 0.541

5 1.5625 0 - 1.5625 0.987

6 1.041 0 - 1.041 0.976

7 1.5625 0 - 1.5625 1.556

Source: Own elaboration

4. With the randomly generated variance data, Table 5 is created with the mean and

variance values for the algorithm.

Table 5. Algorithm data

Task Mean task time Variance

1 1 0.017

2 5 0.165

3 4 0.257

4 3 0.541

5 5 0.987

6 6 0.976

7 5 1.556

Source: Own elaboration

Algorithm Development

The steps for the solution of the generated chromosome are described below:

1. Place the possible assignable tasks (1,6) to the lock station 1.

2. Select one of the tasks at random.

3. Determine the probability that the station time will exceed the cycle time.

4. If the probability that the station time exceeds the cycle time is less than the value of

α, the assignment of tasks to station 1 continues.

5. If the probability that the station time exceeds the cycle time is greater than the

value of α, station 2 is opened and the assignment of tasks continues.

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

To exemplify the solution process of the algorithm, the chromosome previously

shown in table 1 and the data from table 5 are used. Table 6 shows the steps for the solution

of the mentioned chromosome. The proposed cycle time is 10 and the proposed probability

is 95% (α = 0.05).

Table 6. Chromosome solution

Probability 95 %, α = 0.05, CT = 10

Tasks to

be

assigned

Selected

task
µ Σµ σ^2 Σσ^2 √Σσ^2 Pk

Work

station

1,6 1 1 1 0.017 0.017 0.130 1-F((10-1)/0.130) = 0 1

4,6 6 6 7 0.976 0.993 0.996
1-F((10-7)/0.996) =

0.001
1

4,5 4 3 10 0.541 1.534 1.239 1-F((10-10)/1.239) = 0.5 2

7,5 5 5 8 0.987 1.528 1.236
1-F((10-8)/1.236) =

0.052
3

7,3 3 4 9 0.257 1.244 1.115
1-F((10-9)/1.115) =

0.184
4

7,2 7 5 9 1.556 1.813 1.346
1-F((10-9)/1.346) =

0.228
5

2 2 5 10 0.165 1.721 1.312 1-F((10-10)/1.312) = 0.5 6

Source: Own elaboration

• Operation 1

Calculation of the probability that the time at station 1 exceeds the cycle time using

equations 1 and 2 with task 1 assigned:

1-F((10-1)/0.130)

Z𝑘 =
(10 − 1)

0.130

Zk = 69.23

P value from Z table:

F(Zk) = P(x<10) = 1

Pk = P(x>10) = 1 - P(x<10) = 0

• Operation 2

1-F((10-7)/0.996)

Z𝑘 =
(10 − 7)

0.996

Zk = 3.012

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

P value from Z table:

F(Zk) = P(x<10) = 0.9987

Pk = P(x>10) = 1 - P(x<10) = 0.001

• Operation 3

1-F((10-7)/0.996)

Z𝑘 =
(10 − 10)

1.239

Zk = 0

P value from Z table:

F(Zk) = P(x<10) = 0.5

Pk = P(x>10) = 1 - P(x<10) = 0.5

At the end of operation 3, it is observed that the probability that the time of station 1

exceeds the cycle time is greater than the value of α; therefore, Season 2 opens.

The operations for each of the tasks selected to be assigned to the following stations

are performed in the same way. The solution for this chromosome results in six

workstations.

Computational solution

The computational algorithm develops solutions by searching for chromosomes that

generate feasible solutions through genetic operations. The process involves the following:

the user defines the initial populations, the most suitable chromosomes are selected to carry

out the crossover operation, a random selection of chromosomes is made for the mutation

operation, and the new population is complemented with more suitable chromosomes for be

conserved and with new chromosomes. This process continues until the established number

of generations is reached. The block diagram of figure 4 represents the process of the

algorithm.

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

Figure 4. Algorithm process

Source: Own elaboration

Results

To evaluate the algorithm for the stochastic type 1 U-shaped line balancing

problem, the set of line balancing problems presented by Armin Scholl (1993) was used,

which has been used by several authors to test different solution methodologies. to the line

balancing problem. This set of problems proposes task times, which were considered as the

mean task time (µi).

Seven problem categories are used for algorithm evaluation: Mertens (7 tasks),

Bowman (8 tasks), Jaeschke (9 tasks), Jackson (11 tasks), Mitchell (21 tasks), Heskiaoff

(28 tasks), and Killbridge. (45 tasks). The problems are evaluated in two ranges of variance

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

(high and low variance), which allows to visualize the impact on the solutions with

different ranges in the variance of the tasks. Task completion probabilities were set to 0.90,

0.95, and 0.97 (Kα = 1.28, 1.645, and 1.96, respectively). The combination of these

categories with their respective cycle times, variance ranges, and different probabilities

generate a total of 165 problems. These were solved with a 2.3 GHz personal computer.

Tables 7 and 8 show the results highlighted in bold of the computational development of

the algorithm and the existing solutions in the literature of Baykasoğlu y Özbakır (2006).

Table 7. Algorithm computational development results for low variance

Low variance

Problems
Tasks

numbers

Cycle

time

K(1-α) = 1.96 Probability 97.5 % K(1-α) = 1.645 Probability 95 % K(1-α) = 1.28 Probability 90 %

SI
Solution

WS
CPT SI Solution WS CPT SI

Solution

WS
CPT

 Existing Existing Existing Existing Existing Existing

Mertens 7 8 1.354 6 5 0.118 0.203 1.354 6 5 0.053 0.281 1.354 6 5 0.049 0.078

 10 1.414 5 4 0.102 0.17 1.414 5 4 0.053 0.201 2.179 4 4 0.045 0.18

 15 0.577 3 3 0.11 0.079 0.577 3 3 0.056 0.203 0.577 3 3 0.049 0.22

 18 0.707 2 2 0.112 0.281 0.057 2 2 0.707 0.155 0.707 2 2 0.043 0.187

Bowman 8 20 5.082 6 6 0.141 0.172 5.082 6 6 0.045 0.203 2.75 5 5 0.037 0.094

Jaeschke 9 6 N/S/F 8 N/S 0.172 N/S/F 8
N/S/

F
0.203 N/S/F 8 N/S 0.156

 7 1.541 8 7 0.161 0.157 1.541 8 7 0.113 0.172 1.62 8 7 0.055 0.23

 8 1.62 8 7 0.058 0.172 1.62 8 7 0.032 0.09 1.927 7 7 0.032 0.171

 10 2.12 6 5 0.181 0.141 2 5 5 0.152 0.141 2 5 5 0.109 0.13

 18 0.816 3 3 0.187 0.14 0.816 3 3 0.127 0.11 2.08 3 3 0.057 0.203

Jackson 11 9 1.414 8 7 0.097 0.17 1.414 8 7 0.055 0.204 1.5 8 7 0.048 0.2

 10 1.69 7 7 0.151 0.063 1.69 7 7 0.071 0.183 1.69 7 7 0.068 0.172

 13 1.095 5 5 0.137 0.14 1.414 5 5 0.066 0.204 1.264 5 5 0.066 0.13

 14 1.264 5 4 0.132 0.188 1.264 5 4 0.073 1.1 0.707 4 4 0.057 0.24

 21 0.816 3 3 0.126 0.187 0.816 3 3 0.069 0.14 0.816 3 3 0.063 0.157

Mitchell 21 15 2.774
1

0
N/S/F 0.153 N/S/F 1.632 9 N/S/F 0.101 N/S/F 1.563 9 9 0.101 0.297

 21 1.647 7 6 0.173 0.5 0.707 6 6 0.105 0.843 0.707 6 6 0.103 0.26

 26 1.183 5 5 0.154 0.34 0 5 5 0.128 0.344 0.183 5 5 0.126 0.234

 35 1.5 4 4 0.254 0.28 5.408 4 4 0.227 0.21 2.692 4 4 0.167 0.281

 39 8.139 4 4 0.301 0.21 1.29 3 4 0.225 0.235 1.29 3 3 0.218 0.156

Heskiaoff 28 205 12.69 6 6 0.138 11.031 14.85 6 6 0.166 3.297 10.23 6 6 0.131 0.343

 216 12.11 6 6 0.134 1.97 17.34 6 6 0.186 0.1 23.54 6 6 0.171 0.25

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

 256 12.88 5 5 0.311 0.405 18.15 5 5 0.183 0.36 23.75 5 5 0.202 0.328

 324 18.61 4 4 0.282 0.453 20.84 4 4 0.205 0.25 28.52 4 4 0.216 0.454

 342 29.77 4 4 0.247 0.328 36.78 4 4 0.197 0.32 65.6 4 4 0.239 0.406

Killbridge 45 79 6.073 9 9 0.346 0.39 6.904 9 9 0.275 0.39 8.062 9 8 0.289 5.203

 92 11.34 8 8 0.349 0.594 5.707 7 8 0.353 0.391 5.644 7 7 0.294 1.37

 110 4.163 6 6 0.395 0.4 5.887 6 6 0.334 0.4 5.228 6 6 0.336 0.594

 138 9.777 5 5 0.412 0.578 12.17 5 5 0.407 0.2 21.24 5 5 0.42 0.39

 184 33.79 4 4 0.48 0.391 42.05 4 4 0.437 0.112 47.15 4 4 0.399 0.45

N/S/F No feasible solution found

Source: Own elaboration

Table 8. Algorithm computational development results for high variance

High variance

Problems
Tasks

numbers

Cycle

time

K(1-α) = 1.96 Probability 97.5 % K(1-α) = 1.645 Probability 95 % K(1-α) = 1.28 Probability 90 %

SI
Solution

WS
CPT SI

Solution

WS
CPT SI

Solution

WS
CPT

 Existing Existing Existing Existing Existing Existing

Mertens 7 8 1.354 6 N/S/F 0.134 N/S/F 1.354 6 N/S/F 0.055 N/S/F 1.354 6 5 0.056 6.172

 10 1.354 6 5 0.078 0.1 1.354 6 5 0.032 0.18 2.489 5 5 0.031 0.14

 15 0.577 3 3 0.141 0.13 0.577 3 3 0.071 0.125 0.577 3 3 0.03 0.11

 18 0.577 3 3 0.149 0.09 0.577 3 3 0.11 0.078 0.707 2 2 0.049 0.075

Bowman 8 20 6.928 7 6 0.07 7.12 5.016 6 6 0.032 0.171 5.016 6 6 0.108 0.2

Jaeschke 9 8 1.62 8 7 0.132 0.922 1.62 8 7 0.036 0.531 1.62 8 7 0.033 1.47

 10 1.927 7 7 0.033 0.125 1.927 7 7 0.071 0.219 2.121 6 7 0.059 0.187

 18 0.816 3 3 0.152 0.234 0.816 3 3 0.121 0.175 0.816 3 3 0.1 0.3

Jackson 11 10 1.414 8 N/S/F 0.068 N/S/F 1.581 8 N/S/F 0.024 N/S/F 1.5 8 7 0.027 0.203

 13 1.732 6 5 0.098 2.04 1.732 6 5 0.074 0.985 1.095 5 5 0.036 1.402

 14 1.095 5 5 0.068 0.891 1.095 5 5 0.084 0.25 2.236 5 5 0.1 0.772

 21 0.816 3 3 0.116 0.766 0.816 3 3 0.044 0.187 0.816 3 3 0.035 0.31

Mitchell 21 21 1.274 8 8 0.08 0.344 1.362 7 7 0.083 0.231 1.647 7 7 0.093 0.516

 26 2.121 6 6 0.196 0.782 1.957 6 6 0.092 0.344 2.366 5 5 0.092 1.89

 35 0.866 4 4 0.257 5.468 0.866 4 4 0.173 0.562 0.866 4 4 0.16 0.281

 39 2.692 4 4 0.269 0.174 6.224 4 4 0.219 0.235 6.576 4 4 0.185 0.344

Heskiaoff 28 205 17.41 8 8 0.298 0.547 20.37 8 7 0.143 1.641 14.75 7 7 0.101 0.437

 216 25.95 8 7 0.491 1.976 27.15 7 7 0.135 0.563 23.76 7 6 0.128 5.593

 256 23.12 6 6 0.2 0.48 18.75 6 6 0.157 0.53 24.06 6 5 0.149 1.453

 324 19.57 5 5 0.15 0.691 41.19 5 4 0.184 0.328 13.1 4 4 0.114 0.531

 342 48.67 5 4 0.249 0.531 5.787 4 4 0.192 0.657 11.25 4 4 0.21 0.18

Killbridge 45 92 10.65 9 8 0.198 0.61 4.769 8 8 0.201 5.547 7.632 8 8 0.172 0.594

 110 8.115 7 7 0.288 0.609 9.433 7 7 0.214 0.984 21.42 7 6 0.226 4.14

 138 22.61 6 6 0.313 0.782 4.289 5 6 0.302 0.39 8.148 5 5 0.276 0.797

 184 11.85 4 4 0.345 0.593 14.35 4 4 0.331 0.781 31.6 4 4 0.302 0.593

N/S/F: No feasible solution found

Source: Own elaboration

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

At the end of the evaluation process, the algorithm shows the following results:

• Smoothness index (SI)

• Number of workstations (WS)

• Computational time (CPT)

The smoothness index shows how close the generated chromosome (solution) is to

achieving equilibrium on the production line. A number closer to zero is better, because the

smaller this value is, the closer you are to achieving perfect balance. The number of work

stations indicates the number of work stations that are generated by each chromosome. The

computational time indicates the time taken by the algorithm to generate the chromosomes

(time units are shown in nanoseconds). Figure 5 shows an example of the computational

solution of the algorithm.

Figure 5. Algorithm computational solution

Source: Own elaboration

Discussion

From the results obtained, a comparative table is made with the existing solutions of

Baykasoğlu and Özbakır (2006) for high and low variance, where the quantity and

percentage for the following results are shown:

• Ws major. Problems in which one more WS (workstation) was generated.

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

• Similar WS, lower CPT. Problems in which the amount of WS is similar

with a lower CPT (computational time).

• Similar WS, higher CPT. Problems in which the amount of WS is similar

with a higher CPT.

• WS minor. Issues for which a lower WS number was generated.

• No feasible solution was found. Problems for which no solution was found.

• Total problems. Number of problems performed.

Table 9. Comparison results for low and high variance

Low variance

WS

larger

WS

Similar

smaller

CPT

WS

Similar

larger

CPT

WS

smaller

No feasible

solution

found

Overall

problems

 18 52 16 1 3 90

% 20.0 57.8 17.8 1.1 3.3

High variance

WS

larger

WS

Similar

smaller

CPT

WS

Similar

larger

CPT

WS

smaller

No feasible

solution

found

Overall

problems

 18 46 5 6 0 75

% 24.0 61.3 6.7 8.0 0.0

Source: Own elaboration

From the analysis of the results, we can affirm that the evaluated algorithm

provides better solutions for high variance problems, since only for the highest WS result

is a difference of 4 % observed. On the other hand, in the remaining results the

percentages are better. In addition, it can be seen that six better solutions were found than

the existing ones. In this sense, the solutions for some problems show variation for a

maximum additional task, although in most the number of workstations are similar to the

existing ones. Regarding the computation times of the solutions, no great difference is

observed, since most of the times are below 1 second. Table 10 shows the time averages

for both variances.

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

Table 10. Computational times averages

Computational times averages

Variance Algorithm solutions Existing solutions

Low 0.177 0.522

High 0.146 0.991

Source: Own elaboration

 In short, it can be observed that the average times of the algorithm's solutions are

better than the existing ones, which shows the algorithm's ability to find solutions in a

shorter computational time.

Conclusions

Carrying out this work reaffirmed the effectiveness of computational genetic

algorithms for solving complex problems, since results similar to those found in the

literature were found through validation.

On the other hand, it should be noted that in many cases the balancing of lines is

carried out based on the experience of the personnel in charge of this task, that is,

methodologies based on metaheuristics or other tools are not used. An empirical

balancing, therefore, is not always the most appropriate, since it may imply increases in

production costs. However, with this new tool based on genetic algorithms, a more

adequate balancing can be performed on U-shaped lines with stochastic task times. One of

its most outstanding characteristics is its versatility, since it allows different parameters to

be varied to obtain a considerable number of solutions. This serves to experiment and

observe the different aspects that can improve or optimize the operation, with which a

balance can be achieved with the least amount of human resources possible.

Likewise, the validation of the algorithm was a very extensive process, since the

problems carried out were developed with different probability values and variance

ranges. This was very important because it allowed the algorithm to be subjected to

different scenarios in order to achieve as even a comparison as possible.

Finally, it is important to note that the variances of both solutions were randomly

generated, so it is difficult to conclude that an algorithm provides the best solution to the

type 1 stochastic U-shaped line balancing problem. realistically, it would be necessary to

carry out the computational study with equal variances.

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

Future lines of research

With the results obtained, we have a clearer idea of the solutions that the algorithm

can show. In fact, as a solution evaluation measure, the algorithm shows the SI

(smoothness index), although there are also three measures that help to evaluate the

solution. Future work, therefore, could improve the algorithm and incorporate these three

measures of solution evaluation:

1. Balance delay.

2. Line efficiency.

3. Balance sheet efficiency.

References

Baykasoğlu, A. and Özbakır, L. (2006). Stochastic U-line balancing using genetic

algorithms. The International Journal of Advanced Manufacturing Technology, 32,

139-147. https://doi.org/10.1007/s00170-005-0322-4.

Cortez, A. (2004). Teoría de la complejidad computacional y teoría de la computabilidad.

Revista de Investigación se Sistemas e Informática, 1(1), 102–105.

http://inventio.uaem.mx/index.php/inventio/article/view/324

Esparza, D. (2009). EDA para la resolución de problemas de optimización con

restricciones (tesis de maestría). Centro de Investigación en Matemáticas.

https://cimat.repositorioinstitucional.mx/jspui/bitstream/1008/192/2/TE%20311.pdf

Gallego, R. A., Escobar, A. y Toro, E. M. (2015). Técnicas heurísticas y metaheurísticas de

optimización. Universidad Tecnológica de Pereira.

Maldonado, C. E. (2016). Metaheurísticas y resolución de problemas complejos. Revista

Colombiana de Filosofía de la Ciencia, 16(33), 169-185.

https://doi.org/10.18270/rcfc.v16i33.1938

Martínez, U. (2015). Metaheuristics Approach to Solving U-Shaped Assembly Line

Balancing Problems using a Rule-Base Coded Genetic Algorithm (doctoral

dissertation). Department of Mechanical Engineering, Colorado State University.

Orejuela, J. P. y Flórez, A. (2019). Balanceo de líneas de producción en la industria

farmacéutica mediante programación por metas. INGE CUC, 15(1), 109-122.

http://dx.doi.org/10.17981/ingecuc.15.1.2019.10

https://doi.org/10.18270/rcfc.v16i33.1938

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

Scholl, A. (1993). Data of assembly line balancing problems. TH Darmstadt.

https://assembly-line-balancing.de/wp-content/uploads/2017/01/Scholl-1993-

ALBData.pdf

Urban, T. L. and Chiang, W. C. (2006). An optimal piecewise-linear program for the U-line

balancing problem with stochastic task times. Eur J Oper Res, 168(3), 771–782.

https://doi.org/10.1016/j.ejor.2004.07.027

Zhang, H., Zhang, C., Peng Y., Wang, D., Tian, G., XU Liu, X. and Peng, Y. (2018).

Balancing Problem of Stochastic Large-Scale U-Type Assembly Lines Using a

Modified Evolutionary Algorithm. https://doi.org/10.1109/ACCESS.2018.2885030

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

Contribution role Autor (es)

Conceptualization Demetrio Fermán Alvarez

Methodology Demetrio Fermán Alvarez (same)

Ulises Martínez Contreras (same)

Software Ulises Martínez Contreras

Validation Demetrio Fermán Alvarez (same)

Ulises Martínez Contreras (same)

Mirella Parada González (support)

Arturo Woocay Prieto (support)

Adán Valles Chávez (support)

Formal analisis Demetrio Fermán Alvarez (same)

Ulises Martínez Contreras (same)

Mirella Parada González (same)

Arturo Woocay Prieto (same)

Adán Valles Chávez (same)

Investigation Demetrio Fermán Alvarez (main)

Ulises Martínez Contreras (support)

Resources Demetrio Fermán Alvarez (same)

Ulises Martínez Contreras (same)

Mirella Parada González (support)

Arturo Woocay Prieto (support)

Adán Valles Chávez (support)

Date curation Demetrio Fermán Alvarez (same)

Ulises Martínez Contreras (same)

Mirella Parada González (support)

Arturo Woocay Prieto (support)

Adán Valles Chávez (support)

Original draft writing and

preparation

Demetrio Fermán Alvarez (main)

Ulises Martínez Contreras (support)

Mirella Parada González (support)

Arturo Woocay Prieto (support)

Adán Valles Chávez (support)

Writing, proofreading and

editing

Demetrio Fermán Alvarez (same)

Ulises Martínez Contreras (same)

Mirella Parada González (same)

Arturo Woocay Prieto (same)

Adán Valles Chávez (same)

Visualization Demetrio Fermán Alvarez (same)

Ulises Martínez Contreras (same)

Mirella Parada González (same)

 Vol. 14, Núm. 27 Julio - Diciembre 2023, e522

Arturo Woocay Prieto (same)

Adán Valles Chávez (same)

Supervision Demetrio Fermán Alvarez (same)

Ulises Martínez Contreras (same)

Project management Demetrio Fermán Alvarez (same)

Ulises Martínez Contreras (same)

Fund acquisition Demetrio Fermán Alvarez

