Aplicación de la técnica PLS-SEM en la gestión del conocimiento: un enfoque técnico práctico / Application of the PLS-SEM technique in Knowledge Management: a practical technical approach

Minerva Martínez Ávila, Eréndira Fierro Moreno

Resumen


El objetivo de esta investigación es presentar una revisión documental sobre el método multivariante de segunda generación denominado modelación de ecuaciones estructurales con mínimos cuadrados parciales (PLS-SEM, por sus siglas en inglés). Este método está teniendo gran aceptación en la comunidad científica en el área de ciencias sociales por tener un enfoque alternativo, robusto y más flexible al tradicional. En el presente estudio se inicia con aspectos básicos metodológicos de la técnica, a través de datos empíricos, y se evalúa un modelo de investigación con la finalidad de que el lector pueda observar valores de los modelos de medida, del modelo estructural y de la evaluación global del modelo.

Su originalidad y valor permite conocer el uso de la técnica y las directrices para su aplicación y la interpretación de sus resultados mediante el uso del software SmartPLS.

Palabras clave


modelación de ecuaciones estructurales, PLS-SEM, teoría de medición

Texto completo:

PDF / PDF ENGLISH / WORD

Referencias


Albort-Morant, G. Henseler,J., Cepeda-Carrión, G. y Leal-Rodríguez, A.L. (2018). Potential and Realized Absorptive Capacity as Complementary Drivers of Green Product and Process Innovation Performance, sustainability, 10, 381, 1-20.

Albort-Mont, G., Leal-Rodriguez, A.L. y Cepeda-Carrión, G. (2016). The antecedents of green innovation performance: A model of learning and capabilities. Journal of Business Research, 69(11), 4912-4917.

Anderson, J. y Gerbing, D. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423.

Bagozzi, R. (1994). Structural equation models in marketing research: Basic principles. En R. Bagozzi (Ed), Principles of marketing research (pp. 317-385). Oxford, Reino Unido: Blackwell.

Barba, V. y Stienza, C. (2017). Environmental Proactivity and Environmental and Economic Performance: Evidence form the Winery Sector. Sustainability, 8(10), 1-15.

Barclay, D., Higgins, C. y Thompson, R. (1995). The partial least squares (PLS) approach modelling: Personal computer adoption and use as illustration. Technology Studies, 2(2), 285-309.

Belsley, D. (1991). Conditioning diagnostics: Collinearity and weak data in regression. Nueva York, Estados Unidos: John Wiley & Sons.

Bentler, P. y Bonett, D. (1980). Significance tests and goodness of fit in the analysid of covarianza structures. Psychological Bulletin, 88(3), 588-606.

Bollen, K. (1989). Structural Equation with latent variables. Estados Unidos, North Carolina: John Wilet & Sons.

Byrne, B. (2008). Structural Equation Modeling with EQS: Basic Concepts, Applications, and Programming. Nueva York, Estados Unidos: Psychology Press.

Carmines, E. y Zeller, R. (1979). Reliability and validity assessment. N. 07-017, Sage University Paper Series on Quantitative Applications the Social Sciences. Beverly, Estados Unidos: Sage.

Chin, W. (1998). The partial least square approach to structural equation modelling. En G. Marcoulides (Ed.), Modern Methods for Business Research (pp. 295-369). Mahawah, Estados Unidos: Lawrence Erlbaum.

Chin, W. (1998a). Issues and opinion on structural equation modeling. MIS Quarterly 22(1), 7–16.

Chin, W. (2010). How to write up and report PLS analyses. En E Vinzi, W. Chin, J. Henseler y H. Wang (Eds.), Handbook of partial least squares: Coceots, methods and applications (pp. 655-690). Berlín, Alemania: Springer-Verlag.

Cohen, J. (1998). Statically power analysis for the behavioral sciences. Estados Unidos, New York: Laurence Erlbaum Associates.

Diamantopoulos, A. y Siguaw, J. (2006). Formative versus Reflective Indicators in Organizational Measure Development: A Comparison and Empirical Illustration. British Journal of Management, 17(4), 263-282.

Diamantopoulos, A. y Winklhofer, H. (2001). Index construction with formative indicators: An alternative to scale development. Journal of marketing research, 38(2), 269-277.

Diamantopoulos, A., Riefler, P. y Roth, K. (2008). Advancing formative measurement models. Journal of Business Research, 61(12), 1203-1218.

Falk, R. y Miller, N. (1992). A Primer for Soft Modeling. Akron, Estados Unidos: University of Akron Press.

Felipe, C., Roldan, J. y Leal, A. (2017). Impact of Organizational Culture Values on Organizational Agility. Sustatainability, 9(12), 2-23.

Fornell, C. y Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 39–50.

Geisser, S. (1974). A predictive approach to the random effects model. Biometrika, 61, 101-107.

Gefen, D. y Straub, D. (2005). A practical guide to factorial validity using PLS-graph: Tutorial and annotated example. Communications of the Association Systems, 16, 91-109.

Gold, A., Malhotra, A. y Segars, A. (2001). Knowledge management: an organizational capabilities perspective. Journal of Management Information Systems, 18(1), 185-214.

Götz, O., Liehr, K. y Krafft, M. (2010). Evaluation of structural equation models using the partial least squares (PLS) approach. En V. Esposito y W Chin (Eds.), Handbook of partial least squares, (pp. 691-711). Berlín, Alemania: Springer.

Green, S. (1991). How many subjects does it take to do a regression analysis? Multivariate Behavioral Research, 26, 499–510.

Haenlein, M. y Kaplan, A. (2004). A Beginner´s Guide to Partial Least Squares Analysis. Understanding Statistics, 3(4), 283-297.

Hair, J., Anderson, R., Tatham, R. y Black, W. (2007). Análisis multivariante. España, Madrid: Pearson.

Hair, J., Hult, G., Ringle, M. y Sarstedt, M. (2011). PLS-SEM: Indeed, a Silver Bullet. Journal of Marketing Theory and Practice, 2(19), 139–151.

Hair, J., Hult, G., Ringle, C. y Sarstedt, M. (2017). A Primer on Partial Least Square Structural Equation Modeling (PLS-SEM). Estados Unidos, California: Sage.

Hair, J., Ringle, C. y Sarstedt, M. (2011). PLS-SEM: Indeed, a silver bullet. Journal of Marketing Theory and Practice, 19(2), 137-149.

Hair, J., Sarstedt, M., Ringle, C. y Mena, J. (2012). PLS-SEM. An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40, 414-433.

Henseler, J., Ringle, C. y Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135

Henseler, J., Hubona, G. y Ray, P. (2016). Using PLS path modeling new technology research: updated guidelines. Industrial Management & Data Systems, 116(1), 2-20.

Henseler, J., Ringle, C.M, y Sinkovics, R.R (2009). The use de partial least squares path modeling in international marketing. Advances in International marketing, 20, 277-320.

Henseler, J., Ringle, C. y Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3), 405-431.

Hernández, F. (2017). Influencia de la responsabilidad social en el desempeño de las empresas familiares. Journal Globalization, Competitiviness & Gobernability, 11(3), 58-73.

Hernández, F., Moreno-García, J., Yáñez, B. (2016). The mediating role of competitive in international entrepreneurial orientation. Journal of Business Research, 69(11), 5383-5389 .

Hoyle, R. (1995). Structural Equation Modeling. Thousand Oaks, Estados Unidos: Sage

Hu, L. y Bentler, P. (1998). Fit indices in covariance structure modeling: sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424-453.

Hu, L. y Bentler, P. (1999). Cutoff criteria for fitindexes in covariance structure analysis: conventional criteria versus new alternative. Structural Equation Modeling, 6(1), 1-55.

Hulland, J. (1999). Use of Partial Least Squares (PLS) in strategic management research: a review of four recent studies. Strategic Management Journal, 20(2), 195-204.

Kwong, K. y Wong, K. (2013). Partial Least Square Structural Equation Modeling (PLS-SEM). Techniques Using SmartPLS. Marketing Bulletin, 24, 1-32.

Lévy, J. y Varela, J. (2006). Modelación con Estructuras de Covarianzas en Ciencias Sociales. España, Madrid: Editores Netbiblo.

Marcoulides, G., Chin, W. y Saunders, C. (2009). A critical look at Modeling. MIS Quarterly, 1(33), 171-175.

Marcoulides, G. y Saunders, C. (2006). PLS: A silver bullet? Management Information Systems Quarterly, 30(2), 3-9.

Nunnally, J. y Bernstein, I. (1994). Psychometric theory (3a ed.). Nueva York, Estados Unidos: McGraw-Hill.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, 36, 111-147.

Reinartz, W., Haenlein, M. y Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM, International Journal of Research in Marketing, 26(4), 332-344.

Roberts, N. y Thatcher, J. (2009). Conceptualizing and testing formative constructs: Tutorial and a noted example. The data Base for Advances in Information Systems, 40(3), 9-39.

Roldan, J. y Cepeda, G. (2016). Modelos de Ecuaciones basados en la Varianza: Partial Least Squares (PLS) para Investigadores en Ciencias Sociales (3a ed.). Apuntes del curso en la Universidad de Sevilla, España.

Shmueli, G. y Kopplus, O. (2011). Predictive analytics in information systems research. MIS Quarterly, 35(3), 553-572.

Simoteo, A. (2012). Formative and reflective models: state of the art. Electronic Journal of Applied Statistical Analysis, 5(3), 452-457

Teo, T., Srivastava, S. y Jiang, L. (2008). Trust and electronic government success: an empirical study. Journal of Management Information Systems, 25(3), 99-132.

Urbach, N. y Ahlemann, F. (2010). Structural equation modeling in information systems research using partial least squares. Journal of Information Technology Theory and Application, 11(2), 5-40.

Valdivieso, C. (2013). Comparación de los modelos formativo, reflexivo y de antecedentes de evaluación estudiantil del servicio de la docencia. Revista de Métodos Cuantitativos para la Economía y la Empresa, 16, 95-120.




DOI: http://dx.doi.org/10.23913/ride.v8i16.336

Enlaces refback

  • No hay ningún enlace refback.