Modelo de la aceptación de evaluaciones en línea de matemáticas: percepciones de los estudiantes de licenciaturas en ciencias sociales / Acceptance’s model of on-line math assessments: perceptions from undergraduate social science students

Elizabeth Acosta Gonzaga, Aldo Ramírez Arellano, Jesús Antonio Álvarez Cedillo, Igor Rivera González, Gibran Rivera González

Resumen


Aunque se han realizado estudios en la aceptación de las evaluaciones en línea, no se han explorado para la enseñanza de las matemáticas en estudiantes de licenciaturas en ciencias sociales. Este estudio analiza los efectos de un grupo de factores que afectan la actitud, la aceptación y la intención del uso de las evaluaciones de matemáticas en línea, en estudiantes de la modalidad a distancia de la escuela de Comercio y Administración del Instituto Politécnico Nacional en México. Para ello se utilizó un instrumento con 15 reactivos aplicado a 23 estudiantes. Comprender los factores tratados requirió del modelo para la aceptación de la tecnología (TAM, por sus siglas en inglés), el cual ha probado ser un modelo robusto para determinar la actitud e intención de uso de la tecnología en diversos contextos, incluyendo el educativo. El análisis se realizó mediante la técnica de ecuaciones estructurales, usando mínimos cuadrados parciales, propia para estudios exploratorios y muestras pequeñas. Los resultados sugieren que los factores facilidad de condiciones e influencia social  son los principales determinantes de una actitud y aceptación favorable para usar exámenes de matemáticas en línea, por lo se puede concluir que el proporcionar a los alumnos la infraestructura tecnológica y servicio técnico adecuado es importante, y que el mantener una comunicación continua y eficiente de autoridades y maestros puede influenciar favorablemente a la actitud de los estudiantes para usar la plataforma.

Palabras clave


Adopción de tecnología, educación a distancia, educación superior, evaluación electrónica, exámenes de matemáticas en línea

Texto completo:

PDF / PDF ENGLISH / WORD

Referencias


Acosta-Gonzaga, E. y Walet, N.R. (2017). The role of attitudinal factors in mathematical on-line assessments: a study of undergraduate STEM students. Assessment & Evaluation in Higher Education. 43(3), 1-17. DOI: 10.1080/02602938.2017.1401976.

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. DOI: 10.1016/0749-5978(91)90020-T.

Andersson, A. S. y Grönlund, Å. (2009). A conceptual framework for e-learning in developing countries: A critical review of research challenges. The Electronic Journal of Information Systems in Developing Countries, 38(8), 1-16.

Aroyo, L. y Dicheva, D. (2004). The new challenges for e-learning: The educational semantic web. Educational Technology & Society, 7(4), 59-69.

Bagozzi, R. P. y Yi, Y. (1988). On the Evaluation of Structural Equation Models. Journal of the Academy of Marketing Science, 16(1), 74-94. DOI: 10.1177/009207038801600107.

Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory. Nueva Jersey: Prentice Hall.

Black, P. y Wiliam, D. (1998). Assessment and Classroom Learning. Assessment in Education: Principles, Policy & Practice, 5(1), 7–74. DOI: 10.1080/0969595980050102.

Bennett, R. E. (1998). Reinventing Assessment. Speculations on the Future of Large-Scale Educational Testing. A Policy Information Perspective. Policy Information Center, Educational Testing Service, 1-20 Princeton. Recuperado de http://www.eric.ed.gov/ERICWebPortal/detail?accno=ED424254.

Brown, G., Bull, J., y Pendlebury, M. (1997). Assessing student learning in higher education. Londres: Routledge.

Bucheli, M. G. V. (2015). Manejo de herramientas de la web 2.0 como base para fortalecer procesos de mediación tecnológica. Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 6(11), 588-604. Recuperado de https://www.ride.org.mx/index.php/RIDE/article/view/140.

Buzetto-More, N. A. y Alade, A. J. (2006). Best Practices in e-Assessment. Journal of Information Technology Education, 5, 251–269.

Centeno, B. D. A. y Lira, O. A. (2015). Sistema de evaluaciones en línea como herramienta para los niveles de educación media superior. Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 6(11). 1-34 Recuperado de https://www.ride.org.mx/index.php/RIDE/issue/view/11.

Cheung, R. y Vogel, D. (2013). Predicting user acceptance of collaborative technologies: An extension of the technology acceptance model for e-learning. Computers & Education, 63 (2013), 160-175. DOI: 10.1016/j.compedu.2012.12.003.

Chin, W. W. (1998). The partial least squares approach for structural equation modeling. Modern methods for business research, 295(2) 295-336. Nueva Jersey: Lawrence Erlbaum Associates Publishers.

Cisneros, L. V. (2017). Las Tecnologías de la Comunicación. ¿Incorporación/Exclusión Educativa en Guanajuato? Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 7(14), 325-344. DOI: 10.23913/ride.v7i14.287.

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. DOI: 10.2307/249008.

Davis, F. D., Bagozzi, R. P., y Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology, 22(14), 1111-1132.

DOI: 10.1111/j.1559-1816.1992.tb00945.x.

Dermo, J. (2009). e-Assessment and the student learning experience. A survey of student perceptions of e-assessment. British Journal of Educational Technology, 40(2), 203-214. DOI: 10.1111/j.1467-8535.2008.00915.x.

Dreher, C., Reiners, T., y Dreher, H. (2011). Investigating Factors Affecting the Uptake of Automated Assessment Technology. Journal of Information Technology Education, 10 (2011), 161-181.

Drennan, J., Kennedy, J., y Pisarski, A. (2005). Factors Affecting Student Attitudes Toward Flexible Online Learning in Management Education. The Journal of Educational Research, 98(6), 331-338. DOI: 10.3200/JOER.98.6.331-338.

Fishbein, M. y Ajzen, I. (1975). Belief, attitude, intension and behavior: An introduction to theory and research. Massachusetts: Addison Wesley.

Freitas, D. A., Santos, E. M. D. S., Lima, L. V. D. S., Miranda, L. N., Vasconcelos, E. L., y Nagliate, P. D. C. (2016). Teachers’ knowledge about teaching-learning process and its importance for professional education in health. Interface-Comunicação, Saúde, Educação, 20(57), 437-448.

Fornell, C. y Bookstein, F. L. (1982). Two Structural Equation Models: LISREL and PLS Applied to Consumer Exit-Voice Theory. Journal of Marketing Research, 19(4), 440-452. DOI: 10.2307/3151718.

Gikandi, J. W., Morrow, D., y Davis, N. E. (2011). Online formative assessment in higher education: A review of the literature. Computers & Education, 57(4), 2333-2351. DOI: 10.1016/j.compedu.2011.06.004.

Gill, M. y Greenhow, M. (2008). How effective is feedback in Computer Aided Assessments? Learning. Media and Technology, 33(207–220). DOI: 10.1080/17439880802324145.

Gonçalves, A. y Pedro, N. (2012). Innovation, e-learning and higher education: an example of a University’LMS adoption process. WASET, Proceedings of the International Conference in Higher Education, 1075-1082.

Gong, M., Xu, Y., y Yu, Y. (2004). An enhanced technology acceptance model for web-based learning. Journal of Information Systems Education, 15(4), 365-374.

Götz, O., Liehr-Gobbers, K., y Krafft, M. (2010). Evaluation of Structural Equation Models Using the Partial Least Squares (PLS) Approach. En V. Esposito Vinzi, W. W. Chin, J. Henseler, y H. Wang (Eds.), Handbook of Partial Least Squares, 691-711. DOI: 10.1007/978-3-540-32827-8_30.

Gunasekaran, A., McNeil, R. D., y Shaul, D. (2002). E-learning: research and applications. Industrial and Commercial Training, 34(2), 44-53. DOI: 10.1108/00197850210417528.

Hair, J. F., Black, W. C., Babin, B. J., y Anderson, R. E. (2010). Multivariate Data Analysis. Nueva Jersey: Prentice Hall.

Hair, J. F., Hult, G. T. M., Ringle, C., y Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Thousand Oaks: California. SAGE Publications.

Hair, J. F., Ringle, C. M., y Sarstedt, M. (2013). Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. Long Range Planning, 46(1-2), 1-12. DOI: 10.1016/j.lrp.2013.01.001.

Hair, J. F., Sarstedt, M., Ringle, C. M., y Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414-433. DOI: 10.1007/s11747-011-0261-6.

Heinrich, E., Milne, J., y Moore, M. (2009). An Investigation into E-Tool Use for Formative Assignment Assessment-Status and Recommendations. Educational Technology & Society, 12(4), 176–192.

Henseler, J., Ringle, C. M., y Sinkovics, R. R. (Eds.). (2009). The use of partial least squares

path modeling in international marketing. Advances in International Marketing, 20. Bingley: Emerald Group Publishing. Recuperado de https://www.escholar.manchester.ac.uk/uk-ac-man-scw:89555.

Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: a review of four recent studies. Strategic Management Journal, 20(2), 195-204. DOI: 10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7.

Iannone, P. y Simpson, A. (2013). Students’ perceptions of assessment in undergraduate mathematics. Research in Mathematics Education, 15(1), 17-33. DOI: 10.1080/14794802.2012.756634.

Joint Information Systems Committee. (2007). Effective practice with e-assessment. The Higher Education Funding Council for England (HEFCE) on behalf of JISC. Recuperado de http://www.jisc.ac.uk/publications/programmerelated/2007/pub_eassesspracticeguide.aspx.

_______ (2010). Effective Assessment in a Digital Age. The Higher Education Funding Council for England (HEFCE) on behalf of JISC. Recuperado de http://www.jisc.ac.uk/digiassess.

Larson, M. R. y Bruning, R. (1996). Participant perceptions of a collaborative satellite‐based mathematics course. American Journal of Distance Education, 10(1), 6-22. DOI: 10.1080/08923649609526906.

Levy, Y. (2007). Comparing dropouts and persistence in e-learning courses. Computers & Education, 48(2), 185-204. DOI: 10.1016/j.compedu.2004.12.004.

Lim, C. P. y Khine, M. (2006). Managing Teachers’ Barriers to ICT Integration in Singapore Schools. Journal of Technology and Teacher Education, 14(1), 97-125.

Liu, S. H., Liao, H. L., y Pratt, J. A. (2009). Impact of media richness and flow on e-learning technology acceptance. Computers & Education, 52(3), 599-607. DOI: 10.1016/j.compedu.2008.11.002.

McCann, A. L. (2010). Factors affecting the adoption of an e-assessment system. Assessment & Evaluation in Higher Education, 35(7), 799-818. DOI: 10.1080/02602930902981139.

McCollum, K. (1997). A Professor Divides His Class in Two to Test Value of On-Line Instruction. Chronicle of Higher Education, 43(24), A23-A45. Recuperado de http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ541256.

Miller, T. (2009). Formative computer-based assessment in higher education: the effectiveness of feedback in supporting student learning. Assessment & Evaluation in Higher Education, 34(2), 181-192. DOI: 10.1080/02602930801956075.

Mueller, J., Wood, E., Willoughby, T., Ross, C., y Specht, J. (2008). Identifying discriminating variables between teachers who fully integrate computers and teachers with limited integration. Computers & Education, 51(4), 1523-1537. DOI: 10.1016/j.compedu.2008.02.003.

National Student Forum-Annual Report. (2009). Recuperado de http://webarchive.nationalarchives.gov.uk/20100519174430/nationalstudentforum.com/report2009/.

Pando-Garcia, J., Periañez-Cañadillas, I., y Charterina, J. (2015). Business simulation games with and without supervision: An analysis based on the TAM model. Journal of Business Research. DOI: 10.1016/j.jbusres.2015.10.046.

Reátegui Guzmán, L. A., Izaguirre Sotomayor, M. H., Mori Ramirez, H., Castro Tamayo, R. S., y Aguedo Sussan, N. (2015). Actitud de estudiantes y profesores del Departamento de Pediatría hacia las tecnologías de la información y comunicación (TICs). Anales de la Facultad de Medicina, 76(3), 261-264.

Ringle, C., Wende, S., y Will, A. (2005). SmartPLS 2.0.M3. Recuperado de http://www.smartpls.de. Recuperado de http://www.pls-sem.com/.

Salazar, R. L. C. y Flores, S. G. T. (2016). Diagnóstico del uso de las tecnologías en el proceso de enseñanza y aprendizaje en la educación superior. Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 7(13), 273-292. Recuperado de https://www.ride.org.mx/index.php/RIDE/article/view/249.

Sánchez-Franco, M. J., Peral-Peral, B., y Villarejo-Ramos, A. F. (2014). Users’ intrinsic and extrinsic drivers to use a web-based educational environment. Computers & Education, 74(2014), 81-97. DOI: 10.1016/j.compedu.2014.02.001.

Sang, G., Valcke, M., van Braak, J., y Tondeur, J. (2010). Student teachers’ thinking processes and ICT integration: predictors of prospective teaching behaviors with educational technology. Computers & Education, 54(1), 103-112. DOI: 10.1016/j.compedu.2009.07.010.

Sife, A., Lwoga, E., y Sanga, C. (2007). New technologies for teaching and learning: Challenges for higher learning institutions in developing countries. International Journal of Education and Development using ICT, 3(2), 250-260.

Sun, P. C., Tsai, R. J., Finger, G., Chen, Y. Y., y Yeh, D. (2008). What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction. Computers & Education, 50(4), 1183-1202. DOI: 10.1016/j.compedu.2006.11.007.

Taylor, J. C. (1995). Distance education technologies: The fourth generation. Australasian Journal of Educational Technology, 11(2), 1-7.

Teo, T. (2009). Modelling technology acceptance in education: A study of pre-service teachers. Computers & Education, 52(2), 302-312. DOI:10.1016/j.compedu.2008.08.006.

_______ (2012). Examining the intention to use technology among pre-service teachers: an integration of the Technology Acceptance Model and Theory of Planned Behavior. Interactive Learning Environments, 20(1), 3-18. DOI: 10.1080/10494821003714632.

Teo, T. y Noyes, J. (2011). An assessment of the influence of perceived enjoyment and attitude on the intention to use technology among pre-service teachers: A structural equation modeling approach. Computers & Education, 57(2), 1645-1653. DOI: 10.1016/j.compedu.2011.03.002.

Terzis, V. y Economides, A. A. (2011). The acceptance and use of computer based assessment. Computers & Education, 56(4), 1032-1044. DOI: 10.1016/j.compedu.2010.11.017.

Terzis, V., Moridis, C. N., y Economides, A. A. (2012a). How student’s personality traits affect Computer Based Assessment Acceptance: Integrating BFI with CBAAM. Computers in Human Behavior, 28(5), 1985-1996. DOI: 10.1016/j.chb.2012.05.019.

_______ (2012b). The effect of emotional feedback on behavioral intention to use computer based assessment. Computers & Education, 59(2), 710-721. DOI: 10.1016/j.compedu.2012.03.003.

_______ (2013). Continuance acceptance of computer based assessment through the integration of user’s expectations and perceptions. Computers & Education, 62(0), 50-61. DOI: 10.1016/j.compedu.2012.10.018.

Torrealba, G. (2008). Las TIC y la metodología de proyectos de aprendizaje: algunas experiencias en formación de docentes. Educere, 12(40), 71-78.

Venkatesh, V. y Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. DOI: 10.1287/mnsc.46.2.186.11926.

Venkatesh, V., Morris, M. G., Davis, G. B., y Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478.

Wang, W. T. y Wang, C. C. (2009). An empirical study of instructor adoption of web-based learning systems. Computers & Education, 53(3), 761-774. DOI: 10.1016/j.compedu.2009.02.021.

Wang, N., Xu, L., Li, L. Y., y Xu, L. X. (2013). Design and Implementation of an Automatic Scoring Subjective Question System Based on Domain Ontology. Advanced Materials Research, 753(2013), 3039-3042.

Whitelock, D. M., Mackenzie, D., Whitehouse, C., Ruedel, C., y Rae, S. (2006). Identifying innovative and effective practice in e-assessment: findings from seventeen UK case studies. En M. Danson (Ed.), Proceedings of the 10th CAA International Computer Assisted Assessment Conference, 505-511. Loughborough. Recuperado de http://oro.open.ac.uk/11949/.

Whitelock, D. M. y Brasher, A. (2006). Developing a Roadmap for e-Assessment: Which Way Now? En M. Danson (Ed.), Proceedings of the 10th CAA International Computer Assisted Assessment Conference, 487-501. Loughborough. Recuperado de. http://oro.open.ac.uk/11950/.

Whitelock, D. y Raw, Y. (2003). Taking an electronic mathematics examination from home: what the students think. Computer Based Learning in Science, New Technologies and their Applications in Education 1, 701-713. Nicosia: Department of Educational Sciences, University of Cyprus. Recuperado de http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=BB0BD94AD163923F458E4E8E255C6C17?doi=10.1.1.372.3458.

Whitelock, D. M. y Watt, S. (2008). Reframing e‐assessment: adopting new media and adapting old frameworks. Learning, Media and Technology, 33(3), 151-154. DOI: 10.1080/17439880802447391.

Williams, P. (2002). The Learning Web The Development, Implementation and Evaluation of Internet-Based Undergraduate Materials for the Teaching of Key Skills. Active Learning in Higher Education, 3(1), 40-53. DOI: 10.1177/1469787402003001004.

Zhang, J. (2016). Can MOOCs be interesting to students? An experimental investigation from regulatory focus perspective. Computers & Education, 95(2016) 340-351. DOI: 10.1016/j.compedu.2016.02.003.




DOI: http://dx.doi.org/10.23913/ride.v8i16.337

Enlaces refback

  • No hay ningún enlace refback.